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Abstract 

The longitudinal dynamics of a stored proton beam bunch, acted upon by 

a nonlinear damping force, was studied experimentally at the IUCF Cooler 

Ring. The effect of the nonlinear damping force on synchrotron motion was 

explored by varying the relative velocity between the cooling electron and 

the stored proton beams. Maintained longitudinal oscillations were observed, 

whose amplitude grew rapidly once a critical threshold in the relative ve- 

locity between the proton and electron beams was achieved. We attribute 

this phenomenon to a negative resistance instability occurring after a Hopf 

bifurcation. 
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The Indiana University Cyclotron Facility (IUCF) cooler ring is one of many storage 

rings designed and constructed specifically to employ electron cooling to produce and use 

high quality medium energy ion beams for nuclear and atomic physics research [l]. For a 

beam of 45 MeV protons, the equilibrium 95% transverse emittance is about 0.3 w mm mrad 

with a relative momentum spread full width at half maximum (FWHM) of about 1 x lo-'. 

The motion of the beam bunch with a small emittance can closely simulate single particle 

motion. Several experiments studying transverse motion near betatron resonances [2] have 

demonstrated this advantage. 

Recently, the same techniques for studying transverse motion on a turn-by-turn basis 

were employed to study longitudinal motion, particularly the parametric resonances gener- 

ated by the rf phase or voltage modulation [3]. In the course of making these measurements 

we often observed driven, or maintained, longitudinal oscillations when the relative velocities 

between the proton and electron beams were larger than a threshold value. The maintained 

oscillations have been previously observed [4], h owever there have been neither detailed 

studies nor a credible explanation to this date. 

Since such an instability can heat a stored proton beam, it may have important implica- 

tions for injection schemes in which the electron cooling is used to cool the newly injected 

beam into a previously stored stack. It may also be important for determining the method 

in which electron cooling is changed during the proton beam acceleration. More broadly this 

effect is of interest in understanding any pendulum-like system with nonlinear damping. 

In this paper, we report results of a series of experimental studies on the beam motion as 

the energy of a synchronous proton is varied while holding the electron energy constant. We 

will compare the experimental data with results from computer simulations. The threshold 

behavior of the instability will also be studied semi-analytically. 

Since its discovery in 1945 by McMillan and Veksler [S], synchrotron motion has come 

to be relatively well understood. However, synchrotron motion in a system with electron 

cooling has received relatively little attention. Electron cooling adds to the system a damping 

force similar to that of a damped pendulum. Longitudinal motion in a synchrotron is 
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characterized by 4, the phase of a particle relative to the rf wave in the rf cavity, and its 

conjugate momentum variable 6, which is the fractional momentum deviation of a particle 

from that of the synchronous particle. The difference equations describing the longitudinal 

motion are 

h - sin 40) - f(&), 
d n+l = $n + ‘Jnh&+l, (2) 

where q is the phase slip factor, de is the synchronous phase angle, which for a stored 

beam is 0 deg, h is the harmonic number, f( 6) is the damping drag force, provided by 

electron cooling, V, is the small amplitude synchrotron tune, which is the ratio of the angular 

synchrotron frequency w, to the angular revolution frequency wc, and the subscripts n refer 

to the revolution number. The region of phase space around the stable fixed point at 4 = $0 

and b = 0 within the separatrix is called the rf bucket, and its phase space area is called the 

bucket area. 

The damping force f(6) p ro d uced by the electron cooling is the result of a statistical 

exchange of energy in collisions between the protons and relatively cold electrons as they 

travel together in a section in the accelerator. At IUCF, the cooling section is about 2.2 m 

or about 2.5% of the circumference. The damping force is generally a nonlinear function 

of the relative velocity ~=d between the electrons and the protons. Let 6 be the fractional 

momentum deviation of a proton from the synchronous particle, and 6, be the fractional 

momentum deviation of a proton traveling at the same velocity as the electrons with respect 

to the synchronous particle. Then the v rd in the laboratory frame is given by v:db = (S-S.)?, 

where ,O and 7 are the usual relativistic factors for the synchronous particle, and c is the 

speed of light. In the rest frame of the electrons, we have viz’ = 7,“vbJ/(l- r,“&!$), where 

7= and PC are relativistic factors for the electrons. Since the relative velocity is small and 

7 M “k, we obtain 

%el = (6 - &)Pc, 
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where we have dropped the superscript specifying the reference frame. 

The drag force, based on the non-magnetized binary collision theory for a cooling electron 

beam with an isotropic phase space distribution, can be parametrized as follows [6], 

f(J) = PDF), (4) 

where the kinematic function g(c) is an odd function given by g(C) = $$ [err(<) - -&e-c2] 

with C = (2)) Ae = ue/p c, and a! is the l/e damping rate for small relative velocities 

in s-l. Here a, is the rms velocity spread of the electron beam related to the effective 

temperature. Note that g(C) + C as C ---t 0, the extrema of g(C) are located at C z f0.97, 

and g(C) + 0 as C ---) foe. The damping force f(S), for th e case where the electron velocity 

is the same as the velocity of a synchronous particle, i.e. S, = 0, is zero for a particle at 

the center of the rf bucket, where the rf force is zero. On the other hand, when the electron 

velocity is much different from the velocity of a synchronous particle, the damping force 

is non-zero for a particle at the center of the rf bucket, where the rf force is zero. More 

importantly, the slope of the damping force at the center of the bucket may change sign. As 

we will discuss later, this may lead to an instability at the center of the rf bucket. 

In machines where the electron beam is magnetically confined by a solenoidal field, as it 

is in the IUCF cooler ring, the damping force can be enhanced by an effect called magnetized 

cooling, which becomes important when the relative velocities are small. However, for this 

effect to become significant there must be a rather precise alignment of the electron and 

proton beams. Since we made little special effort to precisely align the proton and electron 

beams and our experiments were studying effects of the nonlinear cooling force at a relatively 

large relative velocity, we assume that the damping force is given by the non-magnetized 

theory alone in our data analysis. 

This set of experiments was done with a 45 MeV proton beam injected and then stored in 

a 10 s cycle with electron cooling being completed within the first 5 s. The phase slip factor 

71 was about -0.86. The rf cavity frequency was 1.03168 MHz with harmonic number h = 1. 

The beam was a single bunch of about 3 x lo8 protons with a typical width of about 60 ns 
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(or 5.4 m) FWHM f or a rf peak voltage of about 41 V. Since measurements of longitudinal 

motion were being made, the rf phase lock feedback loop was switched off. Damping of 

synchrotron oscillations while operating under these conditions occurred entirely due to the 

electron cooling. 

The phase of the beam was determined from the relative phase between the signal from 

a pickup coil in the rf cavity, and a sum signal from a beam position monitor (BPM) after it 

had been passed through a 1.4 MHz low pass filter. Our current phase detector has a range 

of 720 deg. The momentum deviation of the beam was found from changes in the beam 

closed orbit AZ,, which was measured with a BPM in a region of high dispersion D,. The 

fractional momentum deviation S could then be determined using the relation 6 = Az,,/~, 

where D, was measured to be 3.9 m. The position signal was passed through a 3 kHz low 

pass filter to remove the possible effects of coherent betatron oscillations. Both the b and 

phase signals were digitized using our data acquisition system [2]. As many as 16384 points 

were digitized at lo-turn intervals. 

To investigate the effect of the nonlinear damping force on motion, the electron velocity 

was displaced from the proton velocity to produce a nonzero relative velocity. This can be 

achieved in two ways. The most straightforward way would have been to change the electron 

energy. However, at IUCF the electron energy is changed by changing the high voltage power 

supply (HVPS) setting, which is done digitally in steps of about 4.5 volts. This would result 

in fractional changes in the electron velocity Ap/p in steps of about 9 x 10s5, which proved 

to be too coarse. The other method, which was used in this experiment, was to change the 

energy of the proton beam. This was done by changing the rf frequency in steps as small 

as 1 Hz with a resulting change in the fractional proton velocity of about 1 x lo-‘. If the 

electron velocity is equal to the proton velocity when the rf cavity frequency is fe, then the 

fractional momentum deviation of the electron beam S, from the proton beam at the new rf 

frequency f is given by S, = (f - fo)/(qfe). 

When the rf frequency is shifted, the beam is displaced from the origin and begins to 

undergo a synchrotron oscillation. The motion of the beam will then damp to an attractor, 
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which may be a fixed point or a limit cycle. A simple analogue to this is a pendulum in 

a stiff breeze, the air resistance playing the role of the electron cooling. The motion was 
* A 

characterized by measuring the peak amplitudes of the oscillations, C$ and 6, after waiting 

for three seconds to allow the initial transient to damp out. If the damping force was linear 

over the entire range of v,d, the expected result is that the proton beam would damp to a 

new fixed point having a phase $FP given approximately by 

4 FP = 
2crh$, 

L&u,a * 
(5) 

This would correspond to the situation where the proton beam was continuously losing or 

gaining energy due to the damping force, but with it being compensated by the rf cavity. 

A typical result of this measurement is shown in Fig. 1 for the rf cavity voltage of 85 

V. Two sets of measurements of the maximum phase amplitude 4 are shown; one using the 

phase detector previously described, and a second set using an oscilloscope to measure the 

separation in time between the extremes in the oscillation. The solid lines shown are the 

results of computer simulation using Eqs. (1) and (2) with the damping force of Eq. (4). 

The tracking was done for the time equivalent of 407 before finding $ where r = l/a x 25 

ms, measured from small amplitude damping rate. Each solid line corresponds to a different 

electron temperature A,, starting with Ah, = 1 x 10e4 for the pair of solid lines nearest the 

nominal frequency of fc = 1.031680 MHz and increasing in steps of 1 x 10m4 for each pair 

of lines as one moves further from fe. While the agreement of the tracking results with the 

data is not particularly good for large amplitude oscillations, for small amplitudes the best 

agreement is obtained when AC = 3 x lo-‘. 

It is clear that a unique feature of the motion is a threshold for zl,d (or bP - &) beyond 

which the steady-state motion is not a fixed point attractor, but a limit cycle [7]. The 

measurement of the steady-state motion was repeated for five different rf cavity voltages, at 

various times albeit the electron cooling may not be identical for each case, with qualitatively 

similar results. While the computer tracking produces results which are consistent with the 

data, a more understandable description of the motion and an explanation of threshold 
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behavior can be obtained from the equation of motion with appropriate approximations, 

To obtain the threshold behavior, we linearize the synchrotron Hamiltonian, i.e. sin 4 x 4. 

For simplicity, let z = &, we obtain j? = s/A,. From Eqs. (1) and (2), the synchrotron 

equation of motion becomes 

j;. + 2”g(;: - &) + viz = 0, wo 

where %, = &/A,. Because of the nonlinearity in the kinematic function g(j! - &), Eq. (6) 

is a complicated nonlinear differential equation. However, the location of the attractor may 

be determined by using a method call harmonic linearization [8]. Let the ansatz of Eq. (6) 

be 1: = Asin and i = Avcos(vB). Substituting the solution into the damping force term 

in Eq. (6), the damping force becomes harmonic in time. We can expand the kinematic 

function in a Fourier series as 

9(i - 5~) = a0 + 2 an Cos(nut9) + 2 b, sin(n&), (7) 
n=l n=l 

where 

a0 = & l2’g(i - Qie, (8) 
a, = - ; 1’” g(6 - Se) cos(nue)de, 

bn = t 2X ~ o g(i - &) sin(nvO)d8, 
/ 

(9) 

(10) 

are functions of Au and &/A,. Now, the harmonic linearization approximation is to keep 

only the dominant terms of this expansion, i.e. the dc and the first harmonic terms. The 

damping force becomes 

2a 

wog( 
x,6) = 2cYlG + 2V~U,X + Y2X1, (11) 

where (~1 = alar/(wovA), ~1 = bla/(wOv,A), and x1 = 2aas/(wov2). Thus the equation of 

motion becomes 

2 + 2o!li + u2(x - Xl) = 0, (12) 
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where u = v,+vr with y << v,. Note that err corresponds to the average value of the damping 

coefficient over a complete oscillation and is a function of the amplitude A of the solution. If 

there exists a limit cycle for A # 0, then al must be zero. Therefore, A for the attractor can 

be found by finding the location of the zeros of the function CYI(AY), or equivalently from 

the zeros of the function a 1. While closed form expressions for the functions in Eqs. (8-10) 

have not been obtained, these functions and their zeros were determined numerically. 

Figure 2a shows a plot of al as a function of Av for various values of &/A,. The locations 

of the zeros of al as a function of the momentum offset &/A, are shown in Fig. 2b, where 

they are joined with a solid line. For comparison, the location of the attractor as found from 

computer tracking of the difference equations is shown as a dashed line. As the fractional 

momentum offset of the electron beam is increased, the value of (~1 for small amplitude 

oscillations begins to decrease and eventually changes sign. The value of 6, for which o1 

changes sign is where a driven, or maintained, oscillation first appears. This point happens 

to be near A,, where f(6) is an extremum. Thus the normally damped system becomes 

anti-damped. When this condition is reached, the dynamics of the system is similar to that 

of a system with negative resistance [9]. At the threshold, the fixed point attractor has 

bifurcated into a limit cycle and the fixed point attractor turns into an unstable fixed point. 

A bifurcation of this type is called a Hopf bifurcation [7]. 

In conclusion, we have done a series of detailed experiments to investigate an observed 

instability created for an electron-cooled bunched proton beam when the electron velocity 

differs from the proton velocity. We have shown that for an electron cooled beam, this 

instability can be explained as a maintained oscillation generated by the negative resistance 

resulting from a large relative velocity between the electron and proton beams at which the 

damping force decreases with increasing relative velocities. 

Since the transition from motion which damps to a fixed point to a maintained oscilla- 

tion is quite sharp and strongly dependent on Aer this effect may be useful in determining 

the effective electron temperature A=. This phenomenon should also be an important con- 

sideration in injection schemes in which electron cooling is used to cool a proton beam at 
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an energy different from the injected beam, as is performed at IUCF, since quite clearly it 

can have the unintended effect of heating the injected beam. Another place where it may 

have an impact is in the way in which electron cooling and the proton beam energies are 

ramped. It may be inadvisable to ramp the electron and proton energies separately, de- 

pending on the strength of the electron cooling. The degree to which this phenomenon may 

affect these operations requires further study. A more sophisticated treatment of the motion 

which can predict the amplitude of the transient and its growth rate is needed. Along with 

the maintained oscillations, we have also observed coherent dipole-like oscillations with a 

beamlet lying on or near the limit cycle. Detailed analyses of these data and other related 

experimental results will be reported in a regular article. 

We thanks A. Chao, M. Syphers, M.G. Minty, S. Nagaitsev and J. Ellison for their 

helpful discussions. This work is supported by grants from NSF PHY-9221402 and DOE 

DE-FG02-93ER40801. 
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FIGURES 

FIG. 1. A plot of the peak phase of the steady-state motion as the proton energy (rf cavity 

frequency) is varied. The solid lines are computer tracking results for Ae from 1 x lo-* to 9 x 10A4. 

The rf voltage is 85 V. 

FIG. 2. In a) a plot of the function al versus Av for various values of 2. In b) the location of 

the zeros for the curves in a) versus k are plotted (solid line). The tracking result from one case c 

is shown (dashed lines) for comparison. 
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